

Point processes and model sets

Workshop Aperiodic order and approximate groups

Maximilian Wackenhuth | 23. August 2023

www.kit.edu

Contents

1. Motivation

2. Setting

3. Point processes

Examples

Point processes

4. Associated objects

- Hof autocorrelation
- Intensity of point processes
- 5. Diffraction
 - Diffraction
 - Properties of diffraction

6. Sphere packings

- 7. Cohn-Elkies argument
 - The argument for lattices
 - The argument for point processes

Motivation	Setting	Point processes	Associated objects	Diffraction 000	Sphere packings	Cohn-Elkies argument
0000	000	0000000	00000000	000	000000	000000

Motivation

Motivation ●○○○ Setting

000

Point processes

Associated objects

Diffraction

Sphere packings

Motivation

0000

Sphere packing

A sphere packing is a set of disjoint open balls of equal radius.

Classical density

The classical density of a sphere packing S is given by

$$D(S,x) := \lim_{R \to \infty} \frac{\operatorname{vol}(B(x,R) \cap \bigcup S)}{\operatorname{vol}(B(x,R))}$$

- Böröczky: Classical density very degenerate in \mathbb{H}^n
- Bowen: Study "random sphere packings" to filter out Böröczkys degenerate examples.
- Bowen: For only countably many radii periodic sphere packings in \mathbb{H}^n are optimally dense.

Associated objects

Diffraction

Sphere packings

6/41 23.8.2023 Maximilian Wackenhuth: Point processes and model sets

Point processes

00000000

Motivation

0000

Settina

Setting

Motivation

Point p

Setting

Point processes

Associated objects

Diffraction

Sphere packings

Setting

- G lcsc group.
- $K \leq G$ compact.
- G/K has G-invariant metric d.
- Nice pointwise ergodic theorem for *G*:

$$rac{1}{m_G(G_t)}\int_{G_t}f(g^{-1}.x)dm_G(g)
ightarrow\int_X fd\mu,\quad orall f\in C_c(X)$$

holds for all x in G-invariant set of full measure.

Examples

• \mathbb{R}^n : $G = \mathbb{R}^n$, $K = \{e\}$.

000

- \mathbb{R}^n : $G = \operatorname{Iso}(\mathbb{R}^n)$, K = O(n).
- \mathbb{H}^2 : $G = SL_2(\mathbb{R}), K = SO(2).$
- \mathbb{H}^n : G = SO(n, 1), K = O(n).

Motivation

Setting

Point processes 00000000

Associated objects

Diffraction

Sphere packings

Point processes

Motivation

Point processes

Setting

000

Associated objects

Diffraction

Sphere packings

Example: Lattices

 $\Gamma \leq \textit{G}$ lattice (discrete and cofinite subgroup). $\Omega_{\Gamma} := \textit{G}/\Gamma$

$$\xi:(\Omega_{\Gamma},\mathbb{P})
ightarrow \mathsf{Cl}({\it G}),\quad {\it g}\Gamma\mapsto {\it g}\Gamma$$

 \rightsquigarrow "random" translate of lattice Γ .

Example: Model sets

Model sets

H lcsc group.

- $\Gamma < G \times H$ a lattice projecting densely to *H* and injectively to *G*.
- $W \subset H$ compact.

Then the set $\pi_G(G \times W \cap \Gamma) \subset G$ is called a *model set*.

Example: Model sets

13/41 23.8.2023 Maximilian Wackenhuth: Point processes and model sets

Karlsruher Institut für Technologie

Example: Model sets

Λ model set.

$$\Omega_\Lambda := \overline{G.\Lambda} \setminus \{ \emptyset \}$$

W nice \implies exists unique *G*-inv. probability measure \mathbb{P} on Ω_{Λ} .

$$\xi: (\Omega_{\Lambda}, \mathbb{P}) \to \mathsf{Cl}(G), \quad \Lambda' \mapsto \Lambda'$$

↔ "random" uniformly discrete point set.

Motivation
0000Setting
00000000Point processes
000000000Associated objects
000000000Diffraction
000Sphere packings
00000000Cohn-Elkies argument
00000000

Example: Approximate lattices

Approximate groups $\Lambda \subset G$ such that • $e \in \Lambda$ **(3)** there is a finite set *F* such that $\Lambda^2 \subset F\Lambda$

Motivation

Settina 00000000

Point processes

Associated objects

Diffraction

Sphere packings

Example: Approximate lattices

Strong approximate lattices

 $\Lambda \subset G$ uniformly discrete approximate group s.t. \exists nontrivial *G*-invariant measure \mathbb{P} on $\Omega_{\Lambda} := \overline{G.\Lambda} \setminus \{\emptyset\}$.

 $\rightsquigarrow \xi : (\Omega_{\Lambda}, \mathbb{P}) \rightarrow \mathsf{Cl}(G), \Lambda' \rightarrow \Lambda'$ "random" point set in *G*.

Motivation Setting Point processes Associated objects

Diffraction

Sphere packings

Point processes

Point processes

 (Ω, \mathbb{P}) probability space.

 $\xi:(\Omega,\mathbb{P})\to {\sf Cl}({\it G}/{\it K})$

s.t.

- $\xi(\omega) \subset G/K$ countable for almost all $\omega \in \Omega$
- ξ measurable.
- $\mu_{\xi} \coloneqq \xi_* \mathbb{P}$ is called distribution of ξ .
 - ξ uniformly discrete/FLC/... : $\Leftrightarrow \xi(\omega)$ is uniformly discrete/FLC/... for almost all ω
 - Call ξ ergodic if μ_{ξ} is *G*-ergodic.

In all of the previous examples $K = \{e\}$.

Motivation	Setting	Point processes ○○○○○○●	Associated objects	Diffraction 000	Sphere packings	Cohn-Elkies argument
------------	---------	----------------------------	--------------------	--------------------	-----------------	----------------------

Associated objects

Motivation

Setting

000

Point processes

Associated objects

Diffraction

Sphere packings

Hof autocorrelation

 $\boldsymbol{\xi}$ uniformly discrete ergodic point process.

Hof autocorrelation

Fix a "generic" point Λ of ξ .

$$\eta_{\xi}(f) := \lim_{R \to \infty} \frac{1}{\operatorname{vol}(B(x_0, R))} \sum_{x \in \Lambda \cap B(x_0, R)} \sum_{y \in \Lambda} f(x^{-1}y), \quad \forall f \in C_c(K \setminus G/K).$$

In many cases this gives a well-defined measure on G/K only depending on ξ .

Autocorrelation measure

The Hof autocorrelation is conceptually easy, but there is a measure that is easier to work with.

Motivation Setting

Point processes

Associated objects

Diffraction 000 Sphere packings

Periodization

 ξ ergodic uniformly discrete point process, Λ generic point of ξ .

 $\implies \Omega_{\Lambda} := \overline{G.\Lambda} \setminus \{\emptyset\}$ has full measure wrt. μ_{ξ} .

Motivation
0000Setting
00000000Point processes
00000000Associated objects
00000000Diffraction
0000Sphere packings
0000000Cohn-Elkies argument
0000000

Periodization

0000

$$\mathcal{P}_{\xi}: \mathcal{C}_{c}(G/\mathcal{K})
ightarrow \mathcal{C}_{0}(\Omega_{\Lambda}), f \mapsto (\Lambda' \mapsto \sum_{x \in \Lambda'} f(x)).$$

Motivation Setting Point processes 00000000 000

Associated objects

Diffraction 000

Sphere packings

Autocorrelation of point processes

$$\eta_{\xi}(f^**g) = \int_{\Omega_{\Lambda}} \overline{\mathcal{P}_{\xi}(f)} \mathcal{P}_{\xi}(g) d\mu_{\xi} = \mathbb{E}[\overline{\mathcal{P}_{\xi}(f)} \mathcal{P}_{\xi}(g)], \hspace{1em} orall f, g \in \mathcal{C}_{c}(G/\mathcal{K})$$

Hof's autocorrelation measure and the autocorrelation

If G has a "nice" ergodic theorem, then the autocorrelation measure and Hof's autocorrelation are equal.

Motivation Setting P

Point processes

Associated objects

Diffraction 000 Sphere packings

The intensity

$$\int \mathcal{P}_{\xi}(f) d\mu_{\xi} = i(\xi) \int f dm_{G/K}, \quad \forall f \in C_{c}(G/K)$$

Motivation Setting Point processes cooperation of the setting cooperation o

Example

- ξ constructed from lattice: $i(\xi) = \frac{1}{|\Gamma|}$
- ξ constructed from model set: $i(\xi) = \frac{m_H(W)}{|\Gamma|}$

Motivation
0000Setting
0000Point processes
00000000Associated objects
000000000Diffraction
000Sphere packings
0000000Cohn-Elkies argument
0000000

Diffraction

Motivation

Point processes

Setting

000

Associated objects

Diffraction ●○○ Sphere packings

Diffraction

From now on: $C_c(K \setminus G/K)$ commutative.

Diffraction/Spherical diffraction

The *diffraction* of the point process ξ is the Fourier transform $\hat{\eta}_{\xi}$ of the autocorrelation measure.

Appropriate notion of Fourier transform: spherical transform.

Defining property:

$$\eta_{\xi}(f^**f) = \widehat{\eta_{\xi}}(\widehat{f^**f}), \quad \forall f \in C_c(K \setminus G/K).$$

Karlsruher Institut für Technologie

Properties of diffraction

• η_{ξ} is positive measure.

Settina

Motivation

• $\eta_{\xi}(\{\omega_0\}) = i(\xi)^2$, where ω_0 denotes the "trivial spherical function".

Associated objects

Diffraction

000

Sphere packings

• $\eta_{\xi}(f^* * f) = \widehat{\eta_{\xi}(f^* * f)}$ for all $f \in C_c(K \setminus G/K)$.

29/41 23.8.2023 Maximilian Wackenhuth: Point processes and model sets

Point processes

Motivation

Point processes

Setting

000

cesses

Associated objects

Diffraction

Sphere packings

Classical density is not well-behaved.

- Classical density is not easy to work with, even in euclidean space there are issues with oscillation.
- Existence of packings that maximize classical density was show by Groemer in 1961.
- In hyperbolic space exponential volume growth leads to dominating boundary terms and dependence on the point *x* that do not appear in the euclidean case.
- Examples by Böröczky show that the notion of density in the classical sense is very degenerate in hyperbolic space.

We can think of *r*-uniformly discrete sets as sphere packings by spheres of radius *r*. \rightsquigarrow Think of *r*-uniformly discrete point processes as random sphere packings.

Motivation Setting

Point processes

Associated objects

Diffraction 000 Sphere packings

Bowen and Radin: Define density as

$$\mathcal{D}(\xi) = \mathbb{P}(d(\xi, x_0) < r),$$

Pointwise ergodic theorems \implies

 $D(\xi) =$ classical density of Λ for each generic point Λ of ξ .

if ξ ergodic.

Bowen and Radin:

Finding maximal sphere packing density \iff finding maximal packing density of ergodic random sphere packinga.

Motivation
0000Setting
0000Point processes
00000000Associated objects
00000000Diffraction
000Sphere packings
0000000Cohn-Elkies argument
0000000

Density of random sphere packings

Density formula (W.)

 $D(\xi) = m_{G/K}(B(eK, r))i(\xi).$

Hence estimating the maximal intensity of point processes in G/K is a worthwhile goal.

Cohn-Elkies argument

Motivation

Point processes

Setting

000

sses As

Associated objects

Diffraction

Sphere packings

Karlsruher Institut für Technologie

Cohn-Elkies estimate

Cohn and Elkies obtained the following bounds for the density of sphere packings in \mathbb{R}^n :

for nice *f* such that $\hat{f} \ge 0$, \hat{f} and $f(x) \le 0$ for ||x|| > r.

 \rightsquigarrow Reinterpret their proof in the language of point processes and generalize to get bounds for *i*(ξ).

 $C\frac{f(0)}{\widehat{f}(0)}$

 $\Gamma \leq \mathbb{R}^n$ lattice.

Motivation

0000

Setting

000

$$\sum_{x \in \Gamma} f(x) = \frac{1}{|\Gamma|} \sum_{t \in \Gamma^*} \widehat{f}(t),$$
$$\sum_{x \in \Gamma} f(x) \le f(0) \quad \text{and} \quad \frac{1}{|\Gamma|} \sum_{t \in \Gamma^*} \widehat{f}(t) \ge \frac{1}{|\Gamma|} \widehat{f}(0),$$
$$\implies f(0) \ge \frac{1}{|\Gamma|} \widehat{f}(0)$$

Point processes occorrect objects

Diffraction

Sphere packings

Conjecture by Cohn and Zhao: This bound holds in hyperbolic space.

Cohn, Lurie and Sarnak: Bound valid for periodic packings.

Motivation Setting Point processes Asso

Associated objects

Diffraction 000 Sphere packings

Argument for point processes

$$\lim_{R\to\infty}\frac{1}{m_{G/K}(B(eK,R))}\sum_{x\in\Lambda\cap B(eK,R)}\sum_{y\in\Lambda)}f(x^{-1}y)=i(\xi)^2\widehat{f}(\omega_0)+(\widehat{\eta}_{\xi}(\widehat{f})-i(\xi)^2\widehat{f}(\omega_0))$$

$$i(\xi)^2 \widehat{f}(\omega_0) + (\widehat{\eta}_{\xi}(\widehat{f}) - i(\xi)^2 \widehat{f}(\omega_0)) \ge i(\xi)^2 \widehat{f}(\omega_0)$$

$$\lim_{R \to \infty} \frac{1}{m_{G/K}(B(eK,R))} \sum_{x \in \Lambda \cap B(eK,R)} \sum_{y \in \Lambda} f(x^{-1}y) \leq \lim_{R \to \infty} \frac{1}{m_{G/K}(B(eK,R))} \sum_{x \in \Lambda \cap B(eK,R)} f(KeK) = i(\xi)f(KeK)$$

Motivation
0000Setting
00000000Point processes
00000000Associated objects
00000000Diffraction
000Sphere packings
0000000Cohn-Elkies argument
0000000

Karlsruher Institut für Technologie

Bound for point processes

$$i(\xi) \leq rac{f(\textit{KeK})}{\widehat{f}(\omega_0)}$$

Motivation

Point processes

Setting

000

Associated objects

Diffraction

Sphere packings

Cohn-Elkies argument ○○○○●